Sandia

Exceptional service in the national interest @ National
Laboratories

Performance Portability in SPARC — Sandia’s
Hypersonic CFD Code for Next-Generation Platforms

23 Aug 2017 — DOE COE Performance Portability Meeting

Micah Howard, SNL, Aerosciences Department
& the SPARC Development Team

"T%, U.S. DEPARTMENT OF / Y A] D(ZG
&) EN ERGY Tl A’ A4 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary
’ National Nuclear Security Administration of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND NO. 2017-8900 C

Motivation: Hypersonic Reentry Simulation

Mach

10
9
8
7
6
Unsteady, 5
turbulent g
flow 2
1
0
Flowfield
radiation Surface ablation & in-depth
decomposition
Gas-phase thermochemical
- A \ non-equilibrium
\\ £
___ Atmospheric
variations

Maneuvering RVs: Laminar/transitional/turbulent
Shock/shock & boundary layer Gas-surface
shock/boundary chemistry
layer interaction

Random vibrational loading

SPARC Compressible CFD Code) 2.

= State-of-the-art hypersonic CFD on next-gen platforms

= Production: hybrid structured-unstructured finite volume methods

= R&D: high order unstructured discontinuous collocation element methods
= Perfect and thermo-chemical non-equilibrium gas models
= RANS and hybrid RANS-LES turbulence models

= Enabling technologies

= Scalable solvers
" Embedded geometry & meshing
= Embedded UQ and model calibration

= Credibility

= Validation against wind tunnel and flight test data

= Visibility and peer review by external hypersonics community
= Software quality

= Rigorous regression, V&V and performance testing
= Software design review and code review culture

Performance Portability - Kokkos @&

m m Applications & Libraries m

Kokkos 2.0

performance portability for C++ applications

d J

Multi-Core Many-Core APU CPU+GPU

Performance Portability)

The problem on Heterogenous Architectures (e.g. ATS-2)
« C++ virtual functions (and function pointers) are not (easily) portable

* Answers?
1. Kokkos support for portable virtual functions
2. C++ standard support for portable virtual functions
3. Run-time->compile-time polymorphism

SPARC has taken the ‘run-time->compile-time polymorphism’ approach

With this approach, we needed a mechanism to dispatch functions
dynamically (run-time) or statically (compile-time)

Dynamic dispatch is possible on GPUs but requires the object be created
for each thread or team on the GPU

Performance Portability)

template <bool is dyn, typename Type=MyClass>
struct Dispatcher {

static voild my func (const MyClass* obj)

static cast<const Type*>(obj)->Type::my funcT();
i

Now we need a mechanism to convert run-time polymorphism to
compile-time polymorphism so we can dispatch functions statically

Enter the rt2ct chain...

A “Create” chain is used to piece together compile-time instantiations of classes
The end of the chain (which is all compile-time) is handed to a Kokkos kernel

In this way, we can arbitrarily handle combinations of physics models
(GasModels, FluxFunctions, BoundaryConditions) for (efficient) execution

on GPUs ’

Threaded Assembly/Solves)

Threaded Assembly on Structured Grids: MeshTraverserKernel

MeshTraverserKernel allows a physics code (think flux/flux Jacobian
computation and assembly) to operate on a structured (i, j, k) block
- implements a multi-dimensional range policy for Kokkos: :parallel for
- provides 1, 7, k line traversal (CPU/KNL) and ‘tile’ traversal (GPU)

class PhysicsKernel
public MeshTraverserKernel<PhysicsKernel>

{ /* ... */ };

Array4D node-level multi-dimensional data for a structured block
- wraps a Kokkos: :DualView

Graph coloring (red-black) to avoid atomics during assembly

Threaded solves provided through Tpetra/Belos (point-implicit, GMRES)
- OpenMP used for SPARC'’s native point-implicit and line-implicit solvers

Net result of FY16 work: SPARC is running, end-to-end,

(equation assembly + solve) on the GPU ,

Performance Portability)

= SPARC is running on all testbed, capacity & capability platforms
available to SNL, notably:
Knights Landing (KNL) testbed

Power8+GPU testbed
Sandy Bridge & Broadwell CPU-based ‘commodity clusters’

ATS-1 — Trinity (both Haswell and KNL partitions)
ATS-2 — Power8+P100 ‘early access’ system

SPARC vs Sierra/Aero Performance @i
For the Generic Reentry Vehicle use-case...

Investigation of CPU-only, MPI-only performance

Code Grid/Nodes EA t/s [s| | Speedup || ES t/s [s] | Speedup || T/S [s] || Speedup
Sierra/Aero 4M cells/1 node 1.15 1.00 x 1.26 1.00 x 2.56 1.00 x
SPARC (Str) 4M cells/1 node 0.585 1.96 x 0.803 1.57 x 1.46 1.75 x
SPARC (Uns) 4M cells/1 node 0.433 2.64 X 0.808 1.56 x 1.38 1.85 x

Sierra/Aero | 32M cells/8 nodes 1.23 sec 1.00 x 1.36 sec 1.00 x 2.77 sec|| 1.00 x
SPARC (Str) 32M cells/8 nodes 0.505 sec | 2.44 X 0.823 sec | 1.66 x | 1.44 sec|| 1.93 x
SPARC (Uns) | 32M cells/8 nodes 0.446 sec | 2.77 X 0.836 sec | 1.63 x || 1.43 sec|| 1.93 x

Sierra/Aero | 256M cells/64 nodes 1.53 sec 1.00 x 1.51 sec 1.00 x 3.23 sec|| 1.00 x
SPARC (Str) | 256M cells/64 nodes || 0.581 sec | 2.63 X 0.829 sec | 1.82 x 1.50 sec|| 2.15 x
SPARC (Uns) | 256M cells/64 nodes || 0.465 sec | 3.28 X 0.849 sec | 1.78 x || 1.46 sec|| 2.21 x

(EA t/s = Equation Assembly time/step; ES t/s = Equation Solve time/step; T/S = Total Time/Step)

SPARC performing ~2x faster than Sierra/Aero

Parallel efficiency is better than Sierra/Aero

Even higher performance from SPARC for CPU-only systems will
come with continued investment in NGP performance optimization
Structured vs unstructured performance...

9
'

SPARC: Strong Scaling Analysis) .

For the heaviest kernel during equation assembly...

Compute Residual: Interior Faces

2 5 W% Broadwell 32x1 str
@@ Haswell 32x1 str
T B B KNL 16x16 str .
*—% KNL 32x8 str
‘n A—A KNL 64x1 str
= O NN @@ KNL 64x4 str
Ko}
First... ol N\ e
) * * *
lower = Z § § : § - Threaded KNL >1.5x faster than MPI-only KNL
faster S ol S N N - Threading on KNL is important
45 : : S : . . . [
& > ; ; ; ; ; ; | - HSW/BDW 1.25-1.5x faster than
this is a L;:) -3 o o L - N o o threaded KNL
o : : : : : - : - Higher KNL assembly performance
|092 scale g —4 P e — NG RN . may come from SIMD vectorization
= : : : : : _ - Vectorization a FY18 deliverable
v " . _
.ioo _5_"", """""" Pt T SoTTTTrTTrrarTrmrrret R N PN N\ N
- P100 GPUs 1.5-2x faster than HSW/BDW | : :
—6r - Higher GPU performance still possible |77 *
Vv ™ R ,\/b ,,)’1/ > '\/,LQ: rﬁ)Q)

Number of Compute Nodes or GPUs

10

SPARC: Strong Scaling Analysis) .

For one critical MPl communication during equation assembly...

Halo Exchange

Broadwell 32x1 str
Haswell 32x1 str
KNL 16x16 str

KNL 32x8 str

KNL 64x1 str

KNL 64x4 str

P100 str

1333 1adi

- Something is amiss with GPU-GPU MPI on P8/P100 systems
- Apparently this will be fixed with P9/Volta?

log, Time per Equation Assembly [s]
4 &
! !

- Halo exchange for CPU good, KNL okay N A o
- Higher performance for low rank/high thread count KNL | :
L L L L L L L L

T X % Lo N > N o
S UG S GG L

Number of Compute Nodes or GPUs

11

SPARC: Strong Scaling Analysis) .

For the linear equation solve...

Linear Equation Solver

Broadwell 32x1 str

Haswell 32x1 str

KNL 16x16 str

KNL 32x8 str

KNL 64x1 str i
KNL 64x4 str

YA
[
(g
*—k
AA
oo

- Solves on threaded KNL ~2x faster than
HSW/BDW
- Higher performance on KNL still possible
with recent compact BLAS work by the
. . . _ : : | KokkosKernels team
1L NG | - Higher performance at scale for low
: : : : | rank/high thread count KNL
- Superlinear behavior a DDR/HBM effect

log, Time per Equation Assembly [s]

=2 b NI N\]
—3 1| - GPU-based solves not shown .
- GPU-based solver performance analysis
4 and optimization investment needed

Vv ™ > © 1% g > ©
~) © N qf)
Number of Compute Nodes or GPUs

12

SPARC: Weak Scaling Analysis T .

For the heaviest kernel during equation assembly...

Compute Residual: Interior Faces

O T —
_ A A A A
W =05 et
= 1 : .| - Similar trend as S.S.: Threaded KNL >1.5x faster
Recall... S : : .| -Again, threading on KNL is important
Q : : : .
lower = 2 -1.0 B I e —8 -
faster S | | 5 - HSW/BDW 1.25-1.5x faster than threaded KNL
& § o %/‘ - Again, vectorization may help
" Zo1sfo S e
this is a = e 5 ; |
Q : : . |¥%—% Broadwell 32x1 str
IOgZ scale g . |@-®@ Haswell 32x1 str
= 5 ;. |BHE KNL 16x16 str
v & : . |d—% KNL 32x8 str
2 : . |A—A KNL 64x1 str
: : . |@—@ KNL 64x4 str
—25 _ __________________________ V-V P100 str
- P100 GPUs 1.5-2x faster than HSW/BDW ;
~ ® & Vv
© &Y

Number of Compute Nodes or GPUs

13

SPARC: Weak Scaling Analysis T .

For one critical MPl communication during equation assembly...

1 Halo Exchange

- Problematic MPI behavior on P8/P100 systems...

%% Broadwell 32x1 str
@@ Haswell 32x1 str
- KNL 16x16 str
*—% KNL 32x8 str
A—A KNL 64x1 str
@@ KNL 64x4 str
V-V P100 str

log, Time per Equation Assembly [s]

7L -—— __________ - Strong scaling on KNL for halo exchange was okay
: : - Weak scaling on KNL for halo exchange needs investigation
i i ;]
> ® & Vv
© &Y

Number of Compute Nodes or GPUs

14

SPARC: Weak Scaling Analysis T .

For the linear equation solve...

Linear Equation Solver

0.5 — -------------------------- - Solves on threaded KNL ~2x faster than HSW/BDW
: .| - Higher performance at scale for low rank/high thread count KNL

Broadwell 32x1 str

—1.0F T Haswell 32x1 str

KNL 16x16 str

log, Time per Equation Assembly [s]

KNL 32x8 str

(g
- Again, GPU-based solves not shown | |[AA KNL 64x1 str
@@ KNL 64x4 str

N S e —

Number of Compute Nodes or GPUs

15

Positive and Negative Experiences Developing
PP Code

= Positive
= Kokkos has helped — we can claim we are mostly portable and performant
= The amount of architecture specific code is insignificant

= Faster code has resulted from designing performance portable code
= Negative

= The DevOps challenge: building the codes and its dependent libraries on
several disparate architectures and establishing testing

The Performance analysis challenge: collecting meaningful performance
data on each architecture

= Developing for the GPU:
= This drove a lot of our software design decisions

= A CPU-only build on a Linux workstation with Intel compiler:
— Clean: 13 min; Incremental: 3 min

= A GPU build on a Power8 node with GCC/Cuda8 compiler:
— Clean: 47 min, Incremental: 40 min
16

Summary

= SPARC s being developed as a performance portable
compressible CFD code to address the challenges posed by
next-generation computing platforms

= ‘The good’ for performance portability and SPARC:
= CPU-only, MPIl-only performance is ~2x faster than the reference code

= Linear solves are ~2x faster for threaded KNL than CPU
= Most significant assembly kernels are ~2x faster for P100 than CPU

= Future work for performance portability and SPARC:

= |mprove assembly performance for KNL -> vectorization

= Hope for the best for halo exchange on P9/Volta (and reduce our MPI comm)
= Work on solver performance for GPUs

17

